AFE Bulletin
Virginia Tech Study - Funded by AFE

Funded by the American Floral Endowment
Production Technology

Special Research Report 525
Robert Wright and Brian Jackson
Department of Horticulture, Virginia Tech, Blacksburg, VA


It is recognized that alternatives to peat must be developed to meet environmental concerns pertaining to mining of peat bogs. Also, peat supplies can also be limited by wet weather conditions that restrict harvest during certain times of the year. These concerns, coupled with increasing fuel (transportation) costs, have led to increased costs of peat substrates. Therefore, there is an increased interest in less expensive and readily available substitutes.

Our research has shown that a pine tree substrate (PTS) manufactured by grinding loblolly pine trees with a hammer mill makes an excellent greenhouse container substrate. The trees can be ground to the correct particle size to give ideal water and air holding capacity for a wide range of greenhouse crops and container sizes. The material can be used fresh, i.e., without composting. The objectives of this research were to determine the effect of: (1) fertilizer rate, (2) substrate particle size, and (3) peat amendment on growth and floral quality, and on postproduction time-to-wilting of potted poinsettias.


‘Prestige’ poinsettias were grown at different fertilizer rates in three PTSs made from loblolly pine trees (Pinus taeda L.) and compared to a peat-based control. Pine tree substrates were produced from pine trees that were chipped, and hammer-milled to a desired particle size. Substrates used in this study included peat-lite (PL), PTS produced with a 2.38-mm screen (PTS1), PTS produced with a 4.76-mm screen (PTS2), and PTS produced with a 4.76-mm screen and amended with 25% peatmoss (v/v) (PTS3). Initial and final substrate physical properties and substrate shrinkage were determined to evaluate changes over the production period. Poinsettias were grown in 1.7-L containers in the fall of 2007 and fertilized at each irrigation with 100, 200, 300, or 400 mg·L-1 N.


At the 100 mg·L-1 N rate, shoot dry weight (Table 1) was higher in plants grown in PL than in the other substrates; shoot dry weight of plants grown in PTS1 and PTS3 were not different; and dry weight of plants grown in PTS2 was lowest. At the 200 mg·L-1 N rate, shoot dry weight was equal for PL, PTS1, and PTS3, with PTS2 being lowest. The 25% peat in PTS3 is most likely responsible for the improved shoot dry weight at the 100 and 200 mg·L-1 N fertilizer rates when compared to PTS2. This is due to the improved physical and chemical properties of the coarser PTS. Shoot dry weight at the 300 mg·L-1 N rate was equal in all substrates. We have previously shown that an additional 100 mg·L-1 N is required for chrysanthemums that are grown in PTS2 to produce growth that is comparable to plants grown in a peat substrate. The 300 mg·L-1 N rate required for plants grown in PTS is within the recommended fertilizer range (200-300 mg·L-1 N) suggested for poinsettia production.

Bract length was generally the same or longer in all PTS-grown plants compared to plants grown in PL at each fertilizer rate. Post-production time-to-wilting was the same for poinsettias grown in PL, PTS1, and PTS3. Initial and final air space was higher in all PTSs compared to PL, and container capacity (CC) of PTS1 was equal to PL initially and at the end of the experiment. The initial and final CC of PTS2 was lower than PL. The incorporation of 25% peat (PTS3) increased shoot dry weight and bract length at lower fertilizer rates compared to 4.76-mm PTS alone (PTS2). Substrate shrinkage was not different between PL and PTS1, but greater than shrinkage with the coarser PTS2.


This study demonstrates that poinsettias can be successfully grown in a PTS with small particles (2.38-mm screen) or a PTS with large particles (4.76-mm screen) when amended with 25% peat moss which results in physical properties (CC and AS) similar to those of PL. Extra fertilizer for PTS compared to a PL substrate may be required.


A PTS made from freshly ground pine trees can be produced near greenhouse operations from locally available trees with the result that fuel costs for shipping raw materials like peat from Canada and the costs of shipping the mix to growers will be dramatically reduced. Likewise, the harvest of pine trees is less weather dependent than peat harvest, and pine trees are a renewable resource and pose fewer environmental concerns associated with harvest. This is a unique approach to container substrate production in that the material is milled and prepared for use as a container substrate rather than mining peat (a non-renewable) or using a by-product of another industry. Wood chips—a common product of the forestry industry and used for a wide variety of purposes such as paper production, building products or fuel—can be further ground to produce a PTS designed for a wide variety of plant species and container sizes. The cost of freshly ground pine chips is about $7 per yd3. Therefore, production costs for a PTS, given further grinding plus additives should be under $15 per yd3, in contrast to $40 or more per yd3 for peat-based substrates.

For additional information contact Robert D. Wright at or for a full review of this work see HortScience 43:2155-2166.

Effect of nitrogen rate and substrate on dry weight of poinsettia

Nit. Rate (ppm)


























< Previous Article | Next Article >

November 2009
In This Issue
   Industry Shows Support for AFE at Fundraising Dinner
   Building Futures Through Philanthropy
   Virginia Tech Study - Funded by AFE
   AFE Heritage Circle Members Honored
   Join the AFE Facebook Group Today!
Send to a Friend


AFE wishes to thank all the individuals who attended the dinner, and the following companies for their generous sponsorships.


Delaware Valley
Floral Group
Highland Supply Corporation
The John Henry Company
Mellano & Company
Pete Garcia Company/Garcia Group
Smithers-Oasis Company


Ball Horticultural Company
The Elite Flower
Golden Flowers
Kennicott Brothers Company
Landmark Plastics Corporation
Leider Horticultural Company
Nurseryman’s Exchange
Oscar G. Carlstedt Company
Paul Ecke Ranch
The Pennock Company
Summit Plastic Company
Syndicate Sales
Tagawa Greenhouses
Vans Inc.

Printing Sponsors:

Los Angeles Flower Market of the American Florists Exchange
San Diego International Floral Trade Center            
San Francisco Flower Mart

Entertainment Sponsor:


Other Contributors:

Adelaide’s Florist
Dos Gringos
Henry Molded Products, Inc.
Phillip’s Flowers
The Roy Houff Company
Strange’s Florist

Floral Donations:

Rio Roses/Equiflor Corporation



To receive this Bulletin electronically, submit your email address to
AFE at, subject line Bulletin.

American Floral Endowment
1601 Duke Street
Alexandria, VA 22314
Phone: 703-838-5211
Fax: 703-838-5212
Copyright 2008-2009 American Floral Endowment. All rights reserved
AFE Home Donate RSS Print-Friendly Search back Issues Send to a friend